sangil의 모든 글

램지수에 관한 Burr와 Erdős의 추측

2015년 봄에 KAIST 수리과학과 졸업생인 MIT의 이중범 박사가 램지이론에 관한 Burr와 Erdős의 1973년 추측을 해결한 논문을 인터넷에 공개하여 놀라게 했었습니다. 이중범 박사는 9월에 KAIST 수리과학과 콜로퀴엄에서 그 결과를 알기쉽게 강연해주었는데요, 그 내용을 소개해볼까 합니다.

데이비드 콘론 교수를 소개한 글에서도 램지 이론이 조금 소개되었습니다. 가장 간단한 경우로 6명이 있으면 그 중 어떤 3명은 서로 아는 사이거나, 어떤 3명은 서로 모르는 사이라는 결과가 있지요. 이 상황을 그래프 언어로 표현하면 꼭지점 6개짜리 완전그래프 $K_6$의 각 선을 빨강이나 파랑으로 색칠하면 항상 빨강색 $K_3$가 부분그래프로 있거나 파랑색 $K_3$가 부분그래프로 있다고 이야기할 수 있습니다.

이제 어떤 (작은) 그래프 $H$에 대해 $r(H)$를 $K_n$의 각 선을 빨강이나 파랑으로 칠하면 반드시 빨강색 $H$가 $K_n$의 부분그래프이거나 파랑색 $H$가 $K_n$의 부분그래프로 있을 $n$의 최소값이라고 합시다. 즉, 앞의 이야기에 의하면 $r(K_3)\le 6$이라는 뜻이죠. 실제로도 $r(K_3)=6$입니다.

$H$가 $K_3$처럼 완전그래프인 경우에는 그 값의 증가율을 구하는게 콘론 교수 소개글에서도 언급된 것처럼 아주 어려운 문제로 남아있습니다. 그럼 $H$에 선이 많이 없는 경우는 어떨까요.

어떤 경우를 선이 많이 없는 경우라고 할까요? $H$의 각 꼭지점에 연결된 선의 수가 몇 개 이하라고 하는 것도 가능하겠지요. 조금 더 확장해서 아래와 같은 개념을 생각해봅시다. $H$의 꼭지점의 수가 $h$개일 때 각 꼭지점에 번호를 1부터 $h$까지 잘 붙였더니, 각각의 꼭지점에서 그것보다 번호가 작은 쪽으로 이어진 선의 수가 $d$개 이하라면 그 그래프 $H$를 $d$-degenerate이라고 합니다. 즉, 사람들을 줄을 세워서 자기보다 앞에 서있는 사람들 중에 자기가 아는 사람이 항상 $d$명 이하가 되게 할 수 있으면 그 사람들로 만든 그래프는 $d$-degenerate인 것이지요. 자기보다 뒤에 서있는 사람 중에 아는 사람이 얼마나 많은지는 그 사람은 신경쓰지 않아도 되니까 중간에 서있는 사람이 아는 사람수는 $d$보다 훨씬 많을 수도 있습니다.

1973년 Burr와 Erdős는 $H$가 꼭지점이 $n$개이면서 $d$-degenerate인 경우는 램지수$r(H)$의 증가율이 낮지 않겠냐 생각해서 \[ r(H)\le f(d) n\]가 되게 하는 $d$에 관한 함수 $f$가 있지 않겠냐 추측을 했습니다. 이걸 Erdős-Burr 추측이라고 합니다. 이 추측에서는 과연 $n^2$이나 $2^n$이 아닌 $n$으로 $r(H)$ 값을 잡을 수 있겠느냐 하는 것이 중요한 것이지요.

그간 많은 수학자들이 이 문제를 해결해보려고 시도를 했습니다.  $d$-degenerate이 아니라 $H$의 각 꼭지점에 연결된 선이 $d$개 이하인 더 쉬운 경우로 만들어서는 1983년에 이미 증명이 되었습니다. $d$-degenerate인 경우에 대해서는 2004년 논문에서 일리노이대학의 Kostochka 교수에머리 대학의 Rödl 교수가 \[r(H)\le f(d)n^2\]이라는 것을 증명하였고 이 후 Kostochka 교수와 이중범 박사의 박사지도교수였던 ETH의 Benny Sudakov 교수가 \[ r(H)\le f(d) \cdot n \cdot n^{\frac{1}{(\log n)^{1/(2d+1)}}} \]이라는 것을 증명했습니다. 나중에 Sudakov 교수가 당시 지도대학원생이고  현재 스탠포드대학에 있는 Fox 교수와 2009년에 \[ r(H)\le f(d) \cdot n\cdot n^{\frac{1}{\sqrt{\log n}}}\]까지 증명한 결과를 발표하여 앞의 결과를 개선했었습니다.

2015 봄 이중범 박사는 적당한 상수 $c$에 대해 \[ r(H)\le 2^{d2^{c(d+1)}} n\]이 성립한다고 증명을 써서 arXiv에 공개하였습니다. 즉, $f(d)=2^{d2^{c(d+1)}}$으로 잡으면 된다는 것을 처음으로 밝혀서 Burr와 Erdős의 추측을 해결한 것이지요. 축하합니다.

2015년 9월 KIAS 조합론 워크샵에서 강연중인 이중범 박사
2015년 9월 11일 양평에서 열린 KIAS 조합론 워크샵에서 강연중인 이중범 박사

하트비거(Hadwiger)의 추측과 그 특수경우

Hugo Hadwiger (Pictures from Oberwolfach Photo Collection, CC-BY-SA-2.0-de)
Hugo Hadwiger (Pictures from Oberwolfach Photo Collection, CC-BY-SA-2.0-de)

평면 상에 교차점 없이 그릴 수 있는 그래프를 평면그래프라 한다. 모든 평면그래프는 이웃한 꼭지점이 서로 다른 색이 되도록 4개 이하의 색으로 잘 칠할 수 있다는 정리를 4색정리라고 하는데, 그래프이론에서 4색정리만큼 잘 알려지고 많은 사람들의 관심을 받은 문제는 없다고 해도 과언이 아니다. 이제 4색정리는 증명이 되었지만, 또 어떤 문제들이 남아있을까?

어떤 그래프 H가 그래프 G의 마이너라 함은, G에서 일부 변과 꼭지점을 지운 후 몇몇 변은 양 끝점을 한 점으로 합치는 ‘축약'(contraction) 연산을 해서 H가 얻어진다는 뜻이다. 어떤 그래프 G가 평면그래프라면 변 하나 잡아서 축약해도 여전히 평면에 교차점 없이 그릴 수 있기 때문에 평면그래프의 모든 마이너는 역시 평면그래프이다.

꼭지점 n개가 서로 다 이어진 그래프를 완전그래프라 부르고 Kn이라 한다. 하트비거는

Kt+1이 마이너로 없는 모든 그래프는 이웃한 꼭지점은 다른 색이 되게 t개의 색으로 칠할 수 있다

고 추측하였다. 휴고 하트비거(Hugo Hadwiger)가 1943년에 만든 추측이라서 하트비거의 추측(Hadwiger’s conjecture)이라고 부른다.

K5는 평면그래프가 아니기 때문에 평면그래프는 K5 마이너를 가질 수 없고 따라서 t=4일때 하트비거의 추측이 참이라면 벌써 4색 정리가 증명된다. 사실, 4색정리를 이용하면 t=4일때 하트비거의 추측 역시 증명할 수 있어서 t=4인 경우 이 추측은 4색정리와 동치이다.

t=2일때는 K3 마이너가 없는 그래프는 항상 수형도 여러 개로 구성된 그래프이므로 2개 색으로 쉽게 칠할 수 있다. t=3일때는 K4 마이너가 없는 경우인데, 이때는 series-parallel 그래프라는 그래프가 되어 역시 손쉽게 3개 색으로 칠할 수 있다.

한편 t=5인 경우는 어려운 문제인데, 1993년에 Robertson, Seymour, Thomas 세 명의 교수가 출판한 논문에서 t=5인 경우 최소 크기의 반례에서는 한 꼭지점을 잘 지우면 평면그래프가 된다는 것을 증명하였고 따라서 사색정리에 의해 t=5인 경우도 하트비거의 추측이 참이라는 것을 증명하였다.

이 추측은 t>5인 경우는 여전히 완전히 미해결인 상태로 남아있다.

이제 하트비거 추측을 약하게 만든 새로운 문제를 생각해보자. 하트비거의 추측이 맞다면 Kt+1마이너가 없는 그래프의 꼭지점 집합을 항상 t개의 꼭지점 집합 X1,X2, .., Xt로 잘 나눠서 각 X1,…,Xt 안에는 변이 하나도 포함되지 않게 할 수 있다. 그러면 혹시 잘 나눠서 각 Xi 안에서 각 꼭지점은 Xi 안에서는 f(t)개 이하의 이웃만 갖게 할 수 있을까? 만일 f(t)=0이라면 원래의 하트비거의 추측과 같다.

최근 필자가 KAIST 강동엽 학생, UIUC에서 박사학위 받고 잠깐 KAIST 와 있는 김재훈 박사, 그리고 프린스턴 대학 Seymour 교수 및 Edwards 학생과 함께 쓴 연구논문(arxiv에 올린 논문)에서  앞에서 언급한 하트비거의 추측의 약한 형태에 대해 연구를 하였는데, 위 조건을 만족하는 f(t)라는 함수가 존재한다는 것을 1페이지짜리 증명을 통해 풀었다. 여기서 흥미롭게도 이 약한 문제에서조차 t개가 아닌 t-1개로는 나눌 수 없다는 것 또한 증명할 수 있었다.

등차수열 여러 개로 정수 집합 덮기

…, -2, 0, 2, 4, 6, 8, 10, … (짝수)
…, -3, 0, 3, 6, 9, 12, 15, … (3의 배수)
…, -3, 1, 5, 9, 13, 17, … (4의 배수+1)
…, -5, 3, 11, 19, 27, 35, … (8의 배수+3)
…, -5, 7, 19, 31, 43, … (12의 배수+7)
…, -1, 23, 45, 68, … (24의 배수+23)

어떤 수 $n$을 24로 나눈 나머지를 생각해보면 모든 정수는 위 등차수열 중 적어도 하나에는 반드시 포함됨을 알 수 있다. 유명한 수학자 에르되시( Erdős)는 1950년 논문에서 임의의 $N$에 대해, 공차가 $N$ 이상인 등차수열만 써도 이런 식으로 모든 정수 집합을 덮을 수 있지 않겠냐고 적었다. 하지만 이 문제는 지난 수십년 간 풀리지 않았었고, 에르되시는 1980년 논문에서 본인이 1934년에 이 문제를 생각했다며 증명이나 반증에 $500을 준다고 했다. 에르되시는 1913년 태어났으니 1934년이면 21살일 때가 되겠다.

수학을 사랑한 아이 책 표지
2013년에는 에르되시에 관한 그림동화책도 한글로 번역되어 출판되었다.

예를 들어 N=3인 경우 아래처럼 등차수열들을 구성하면 공차는 서로 다르면서 전체 정수 집합을 덮을 수 있다.

3의 배수, 4의 배수, 5의 배수, 6의 배수+1, 8의 배수+1, 10의 배수+2, 12의 배수+11, 15의 배수+1, 20의 배수+14, 24의 배수+5, 30의 배수+8, 40의 배수+6, 60의 배수+58, 120의 배수+26.

1968년엔 Churchhouse가 N=9인 방법을 찾고, 1971년에는 Krukenberg가 박사논문에서 N=18인 방법을 기술했으며, S. L. G. Choi가 1971년에 N=20인 방법을 찾았다. 1981년 Morikawa는 N=24까지 올리고 2009년엔 Gibson은 대규모 컴퓨터 계산을 통해 N=25인 방법을 찾았으며, 같은 해 Nielson이 N=40인 방법에 대한 논문을 출판했다. 이 문제에 대한 Nielson의 설명을 아래 동영상에서 볼 수 있다.

2013년  옥스포드대학의 Bob Hough 박사는 에르되시의 위 추측은 거짓이고, 만일 공차가 서로 다른 등차수열로 정수 집합을 덮을 수 있다면 그 중 적어도 하나의 등차수열의 공차는 $10^{18}$보다 클 수 없음을 증명하였다. 이로써 무려 63년만에 에르되시의 미해결 문제 하나가 해결된 셈이다. 증명은 확률론적 방법을 쓰는데, Lovasz Local Lemma를 응용한다고 한다. (arxiv에 올라온 논문)

(이 분야 논문이 있는 캐나다 밴쿠버의 British Columbia 대학 교수로 70년대 주로 활동한 S.L.G. Choi라는 분이 한국인일까요? 아닐 것 같긴 합니다만.)

잘 짜인 동아리 (Generalized Steiner System)

전체 $n$명의 사람이 있는 학교에서 $q$명의 학생들로 구성된 동아리들이 있다고 한다. 그런데 아무렇게나 $r$명의 학생을 모아도 그 $r$명이 동시에 속한 동아리의 수는 정확히 $\lambda$로 똑같다고 한다. 과연 $n$, $q$, $r$, $\lambda$ 값이 어떤 경우에 이런 식으로 동아리들을 구성할 수 있을까?

$i\le r$인 어떤 수 $i$에 대해, 학생 $i$명의 집합 $Z$를 생각해보자. 이 집합 $Z$의 학생을 동시에 포함한 $r$명의 학생의 집합$Y$는 정확히 $\binom{n-i}{r-i}$개가 있으므로, 집합 $Z$의 학생을 동시에 포함한 동아리 $X$가 있을 때 $(X,Y)$의 순서쌍의 수는 정확히 $\lambda\binom{n-i}{r-i}$가 된다. 반대로, $Z$를 포함한 동아리 $X$에 대해 위의 조건을 만족하는 $Y$의 수는 $q-i$명에서 $r-i$명을 뽑는 수와 같으므로 $\binom{q-i}{r-i}$이다. 모든 $Z$를 포함하는 동아리에 대해 위 성질이 성립하므로 \begin{equation}\text{모든 $0\le i\le r$에 대해 $\binom{q-i}{r-i}$는 $\lambda\binom{n-i}{r-i}$의 약수}\label{eq:st} \end{equation}여야 한다.

그럼 조건 \eqref{eq:st}을 만족하는 모든 $n$, $q$, $r$, $\lambda$가 있다면 저런 식으로 동아리를 반드시 짤 수 있을까?

이 문제는 조합론 분야에서 정말 오래된 난제 중 하나이다. $r=2$일 때 이러한 식으로 동아리를 짤 수 있냐 물어보는 문제를 Steiner System이라고 하고, 일반적인 $r$에 대해서는 Generalized Steiner System이라고 한다. 이 문제는 무려 1800년대 중반까지 역사가 거슬러갈 정도로 조합수학 분야에서 정말 오래된 난제 중에 하나인데, 올해 초 이 분야 연구자들을 깜짝 놀라게 한 연구결과를 옥스포드 대학 Peter Keevash 교수가 발표하였다. (arxiv에 올라온 논문)

정리 (Keevash 2014): 모든 $n$, $q$, $r$, $\lambda$가 조건 \eqref{eq:st}을 만족하며 $n$이  충분히 크다면 위와 같은 식으로 동아리를 짜는 것이 가능하다.

Peter Keevash 교수
Peter Keevash 교수 (2003년에 Banff 워크샵 갔을때 만나서 찍었던 사진)

Steiner System에 관한 연구의 역사는 1800년대 중반 수학자들 Plücker (1835년), Kirkman (1846년), Steiner (1853년)로 거슬러 올라간다.  $r=2$인 경우에는 이 문제는 1970년대  칼텍의 Richard M. Wilson 교수가 $n$이 충분히 크면 참이라고 증명하였다.  일반적인 $r$은 아직까지 미해결로 남아있었다.

2014년 6월 미국 미니애폴리스에서 열린 SIAM Conference on Discrete Mathematics라는 학회에서는 긴급하게 “Hot Topic Session”이라는 이름으로 저녁 8시에 Peter Keevash 교수를 초청해서 이 결과에 대한 강연을 듣는 자리가 있었다. 보통 이런 학회의 초청강연자 명단은 몇 달 전에 잡히기 때문에 초청강연자로 하기에는 너무 늦은 상황이지만 결과가 매우 중요하기 때문에 이렇게 늦게 시간을 잡았다고 한다.

이 문제의 해법은 확률론적 방법을 사용하는데 Keevash 교수는 그것을 “Randomized Algebraic Construction”이라고 부른다. 앞으로 이러한 방법이 다양한 문제를 해결하는데 큰 도구가 될 것으로 생각된다.

영국 출신인 Peter Keevash 교수는 프린스턴대학에서 Benny Sudakov 교수 지도 하에 2004년에 박사학위를 받았다. 올 봄에 만났을 때, 어떻게 이 문제에 관심을 가지고 해결하게 되었냐 물어보니, 칼텍에서 박사후 연구원을 할 때 Richard M. Wilson 교수로부터 이 문제를 잘 알게 되었고 그 후 다른 연구를 하면서도 이 문제에 대하여 항상 관심을 가지고 있었다고 한다.